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Abstract: This paper explores the tuning and results of two-part models on rich datasets provided
through the Casualty Actuarial Society (CAS). These datasets include bodily injury (BI), property
damage (PD) and collision (COLL) coverage, each documenting policy characteristics and claims
across a four-year period. The datasets are explored, including summaries of all variables, then
the methods for modeling are set forth. Models are tuned and the tuning results are displayed,
after which we train the final models and seek to explain select predictions. Data were provided by
a private insurance carrier to the CAS after anonymizing the dataset. These data are available to
actuarial researchers for well-defined research projects that have universal benefit to the insurance
industry and the public. Our hope is that the methods demonstrated here can be a good foundation
for future ratemaking models to be developed and tested more efficiently.

Keywords: ratemaking; machine learning; explainability; auto insurance

1. Introduction

In recent years, the rise of machine learning models in predictive analytics has led
to widespread adoption of these methods. They have proven to be effective modeling
techniques in many situations, but have not yet been widely adapted in the auto insurance
ratemaking due to the difficulty of explaining the results to regulators (Akinyemi and Leiser
2020). Nevertheless, recent breakthroughs in explainable machine learning potentially allow
for these methods to be more widely applied in a ratemaking setting (Lundberg et al. 2020).

In this paper, we explore the successes and pitfalls of applying machine learning
algorithms to a suite of datasets obtained from the Casualty Actuarial Society. First, we
explore the data and consider some of the issues that could arise from data integrity. Then,
modeling techniques are described, including the algorithms applied and the methods used
for model training. Training results are reported and explored, after which final models are
trained. Finally, predictions are made on a test set and then explained using some of the
newer techniques alluded to above.

We hope that this exploration of machine learning applied to ratemaking stands as a
jumping off point for others who wish to bring the increased accuracy of machine learning
algorithms into the field. With both the code available on GitHub and data available from
the CAS, it will be easier to compare new methods to the results posted here.

2. The Data

The data used in this paper were obtained from the CAS. These datasets document
the auto policies of a large US-based insurance company across four years, including many
variables describing the policy holder, the time the policy was held for, and the number of
claims and costs associated with each policy.

Risks 2022, 10, 80. https://doi.org/10.3390/risks10040080 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks10040080
https://doi.org/10.3390/risks10040080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-7109-7474
https://orcid.org/0000-0002-9116-8161
https://doi.org/10.3390/risks10040080
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks10040080?type=check_update&version=1


Risks 2022, 10, 80 2 of 25

2.1. The Three Datasets

These policies are split into three different datasets, BI, PD, and COLL. Each dataset
has columns for the ultimate cost of the policy and the ultimate claim count of the policy,
as well as the exposure (or duration) of the policy. There are a significant number of rows
with negative and zero exposures. The exact proportions are documented in Table 1.

Table 1. General description of the three datasets.

Description Num Records % Exposure Amount % Claim Count %

BI 30,342,067 100% 3,830,558 634,080,483 100.00% 32,293 100.00%
Zero exposure 6,724,652 22.16% - 6,958,737 1.10% 367 1.14%

Negative exposure 3,885,178 12.80% (33) 10,848,560 1.71% 606 1.88%

PD 20,201,841 100.00% 2,665,037 520,665,847 100.00% 151,842 100.00%
Zero exposure 4,138,323 20.48% - 6,981,221 1.34% 1898 1.25%

Negative exposure 2,590,939 12.83% (129) 9,330,567 1.79% 2487 1.64%

COLL 30,285,873 100.00% 3,835,828 443,291,671 100.00% 135,419 100.00%
Zero exposure 6,634,314 21.91% - 5,078,430 1.15% 1621 1.20%

Negative exposure 3,889,473 12.84% (118) 7,738,811 1.75% 2291 1.69%

2.2. The Variables and Values

The data consist of the columns “EARNED_EXPOSURE”, “ULTIMATE_AMOUNT”,
“ULTIMATE_CLAIM_COUNT”, and explanatory variables “X_VAR1” through “X_VAR46”.

• “EARNED_EXPOSURE” is the amount of time the policy was taken out for.
• “ULTIMATE_AMOUNT” is the claim cost developed to ultimate, in US dollars. Gen-

erally, the development factors are small in our datasets.
• “ULTIMATE_CLAIM_COUNT” is the number of claims filed for the given policy

again developed to ultimate. We rounded these values to the nearest whole number
because the development factors were not generally large and we wanted to use
discrete models. These values were not always whole numbers due to internal claims
development by the data provider.

• “X_VAR1” through “X_VAR46” are 46 unidentified variables, all of which are discrete
(ordinal numeric or text string). We do know that “X_VAR27” is state and “X_VAR41”
is year, but do not know the individual levels.

We will explore each of these variables for all three datasets in the sections that follow.

2.2.1. EARNED_EXPOSURE

As mentioned above, EARNED_EXPOSURE is one of the more difficult variables to
deal with, as it has many negative and zero values. In our exploration and modeling of the
data, we removed rows containing negative or zero values for EARNED_EXPOSURE. A
summary of EARNED_EXPOSURE across the three different datasets is given in Table 2.

Table 2. Summary of EARNED_EXPOSURE across the three datasets.

Dataset Minimum First Quartile Median Mean Third Quartile Maximum

BI 0.0001 0.0822 0.2110 0.2385 0.3973 1.0028
PD 0.0001 0.0822 0.2138 0.2418 0.4028 1.9996

COLL 0.0001 0.0822 0.2110 0.2384 0.3973 0.9998

2.2.2. ULTIMATE_AMOUNT and ULTIMATE_CLAIM_COUNT

ULTIMATE_AMOUNT and ULTIMATE_CLAIM_COUNT are dealt with jointly, as
they are similar in scope, and together can be used to compute the severity (or cost per
claim) of a policy. Both these variables are extremely right skewed due to the fact that such
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few rows actually have claims. Table 3 shows the percentage of rows in each dataset where
the ULTIMATE_AMOUNT was greater than zero and Table 4 shows the number of rows
for given numbers of claim counts in each dataset.

Table 3. Percentages of positive ULTIMATE_AMOUNT in the different datasets.

Dataset % of Rows with ULTIMATE_AMOUNT above 0

BI 0.16%
PD 1.06%

COLL 0.64%

Table 4. Counts of the rounded values of ULTIMATE_CLAIM_COUNT.

BI PD COLL

Claim Count Num Rows % Num Rows % Num Rows %

0 19,700,470 99.8% 13,329,135 98.9% 19,636,069 99.4%
1 31,531 0.16% 141,107 1.05% 120,681 0.61%
2 218 0.001% 2239 0.02% 5260 0.03%

3+ 18 0.0001% 98 0.001% 76 0.0004%

A little more insight can be gleaned when looking at the distribution of the severity.
The severity is the ULTIMATE_AMOUNT divided by the ULTIMATE_CLAIM_COUNT,
only including those rows that had a claim. Summaries for the severity for each dataset are
given in Table 5 and density plots are shown in Figure 1. Note that the density plots are
given in the log scale on the x axis.

Table 5. Summary statistics for the severity for each dataset.

Dataset Minimum First Quartile Median Mean Third Quartile Maximum

BI 1.1 2842 8821 19,231 21,300 732,953
PD −9506 856 2095 3468 4553 88,494

COLL −2850 1061 2027 3294 3979 101,203

Figure 1. Distribution of the log of the severity for all datasets.

In Table 5, we see that some of the severity is negative. This is due to the fact that the
ULTIMATE_AMOUNT can be negative from things such as salvage or subrogation.

2.2.3. X_VARs

The discrete (and sometimes ordinal) variables X_VAR1 through X_VAR46 are quite
varied. Some have many levels, while others have few; some are balanced in their distribu-
tion between levels but others are not. In Table 6, we give a characterization of all variables
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including a brief description of each one. More comprehensive data regarding each indi-
vidual level of every variable can be found in the GitHub repository. See Appendix B for
more information.

Table 6. Characteristics of the predictor variables.

Variable Unique Values Description

X_VAR1 5 Integer, ranging from 0 to 4 inclusive
X_VAR2 2 Binary, 0 or 1. Nearly all observations are 0 so it is

thrown out in modeling
X_VAR3 5 Integer, ranging from 0 to 4 inclusive
X_VAR4 31 Integer, ranging from 1 to 31 inclusive
X_VAR5 5 Integer, ranging from 0 to 4 inclusive
X_VAR6 17 Integer, ranging from 0 to 16 inclusive
X_VAR7 17 Integer, ranging from 0 to 16 inclusive
X_VAR8 5 Integer, ranging from 0 to 4 inclusive
X_VAR9 10 Integer, ranging from 1 to 10 inclusive
X_VAR10 2 Character, “A” or “B”
X_VAR11 8 Integer, ranging from 1 to 8 inclusive
X_VAR12 5 Integer, ranging from 0 to 4 inclusive
X_VAR13 4 Character, “B”, “C”, “D”, or “E”
X_VAR14 5 Integer, ranging from 0 to 4 inclusive
X_VAR15 4 Integer, ranging from 0 to 3 inclusive
X_VAR16 9 Integer, ranging from 1 to 9 inclusive
X_VAR17 5 Integer, ranging from 0 to 4 inclusive
X_VAR18 7 Character, “A”, “B”, or “E” through “I”
X_VAR19 2062 A string with the form of an integer between 1 and 2529

inclusive preceded by an “A”. Left out of modeling due
to the high number of unique values.

X_VAR20 5 Integer, ranging from 0 to 4 inclusive
X_VAR21 17 Integer, ranging from 0 to 16 inclusive
X_VAR22 23 Integer, ranging from 1 to 23 inclusive
X_VAR23 11 Character, either a digit 1 through 9 inclusive, the letter

“U” or missing
X_VAR24 11 Integer, ranging from 1 to 11 inclusive
X_VAR25 24 Integer, ranging from 1 to 24 inclusive
X_VAR26 5 Integer, ranging from 0 to 4 inclusive
X_VAR27 48 String of two letters, alphabetically between “AA” and

“BY” inclusive. This variable represents state, but the
mapping of the levels to the states is unknown.

X_VAR28 6 Integer, ranging from 1 to 6 inclusive
X_VAR29 5 Integer, ranging from 0 to 4 inclusive
X_VAR30 8 Integer, ranging from 1 to 8 inclusive
X_VAR31 26 Integer, ranging from 1 to 26 inclusive
X_VAR32 5 Integer, ranging from 0 to 4 inclusive
X_VAR33 6 Integer, ranging from 1 to 6 inclusive
X_VAR34 56,817 String consisting of the letter “A” followed by a number.

Due to the high number of unique levels, it is left out
of modeling.

X_VAR35 5 Integer, ranging from 0 to 4 inclusive
X_VAR36 5 Integer, ranging from 0 to 4 inclusive
X_VAR37 5 Integer, ranging from 0 to 4 inclusive
X_VAR38 31 A string consisting of the letter “B” followed by an

integer between 1 and 31 inclusive
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Table 6. Cont.

Variable Unique Values Description

X_VAR39 16 Integer, ranging from 1 to 16 inclusive
X_VAR40 17 Integer, ranging from 0 to 16 inclusive
X_VAR41 4 Integer, ranging from 1 to 4 inclusive. This variable is

the year of the policy, but the policies are not evenly
dispersed across the 4 levels

X_VAR42 5 Integer, ranging from 0 to 4 inclusive
X_VAR43 11 Integer, ranging from 1 to 11 inclusive
X_VAR44 5 Integer, ranging from 0 to 4 inclusive
X_VAR45 17 Integer, ranging from 0 to 16 inclusive
X_VAR46 31,064 String with 5 characters, all numbers and letters. Due to

the high number of unique values, it is left out of modeling

3. Modeling Techniques

In order to model the data, we use a two-part model, where the first part predicts
the frequency of claims and the second part predicts the severity, or cost per claim. These
models are tuned separately, on the same set test data. Here, we discuss the data preparation
that occurred before model tuning, as well as the methodology we used to tune the
different models.

3.1. Data Preparation

The initial data came in 21 separate files. There are 8 files for the BI data, 5 for the
PD data, and 8 for the COLL data. In order to work with these data as three separate
datasets, we combined these files in three distinct files. During this process, we filtered
out any records where EARNED_EXPOSURE was less than or equal to zero, and we also
rounded ULTIMATE_CLAIM_COUNT to the nearest integer. Furthermore, all rows with
an ULTIMATE_CLAIM_COUNT greater than three were set to three.

Once the data were cleaned, we needed to create the train, validation, and test sets
of data for all three datasets. This was performed using the {caret} package function
createDataPartition in R, which gives a stratified sample along a variable so as to make
sure the proportions are similar in all three datasets (Kuhn 2008). We used a split of 50%
training data, 25% validation data, and 25% test data for all three datasets.

Due to the imbalanced nature of the datasets, we also wanted to ensure that the
model was not extremely biased towards predicting zero. In order to accomplish this,
we re-balanced the training set so that it was perfectly balanced between the four classes
(0 claims, 1 claim, 2 claims, 3+ claims). This required a combination of up-sampling and
down-sampling, where the 0 claim class was down-sampled to 3 million observations
and the 1, 2, and 3 claim classes were up-sampled to have 3 million observations each.
Using bootstrap sampling (through the sample_n function in the {dplyr} package), we were
able to create training sets that were balanced in terms of frequency, with 12 million rows
(Wickham et al. 2018).

During the modeling stages, we used the X_VARs as the predictors and the severity
or ULTIMATE_CLAIM_COUNT as the response (depending on which part of the model
we were tuning). However, we dropped four of the X_VARs because they caused issues in
tuning. X_VAR2 was often constant across the entire training set, and so was not useful
for predicting. X_VAR19, X_VAR34, and X_VAR46 contained thousands of unique levels
as categorical predictors and were dropped due to the model complexity caused by the
number of levels. Of the variables that remained, those with only numbers as levels
were treated as ordinal (a regular numeric predictor) and those with characters defining
categories were treated as categorical predictors.
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3.2. Model Tuning

Once the training, validation, and testing data were obtained, we needed to tune
the models. We worked in the H2O framework inside of R to rapidly tune the models
(H2O.ai 2021). The basic layout for both parts was to loop over a predefined tuning grid
where the parameters were set to different values. In each loop, use the balanced training
data to train the model, and then use the validation data to compute metrics on that model.
In each loop we also computed the model predictions on the test dataset, and saved them
to a prediction data frame. After storing the model tuning parameters and resulting metrics
as a row of a data frame, the algorithm continued to the next set of tuning parameters. This
process was repeated for all tuning parameters we defined, for all model types and across
all three datasets. Further details and algorithmic psuedo-code can be seen in Appendix D.

3.2.1. Frequency Model Tuning

To model claim frequency, we used the multinomial family of models with our four
possible classes (0 claims, 1 claims, 2 claims, and 3 claims). We first created a baseline
generalized linear model, to ensure that the predictions from the machine learning methods
improved upon its accuracy. Then, models were developed using a random forest algorithm,
a gradient boosted forest algorithm, and a deep learning algorithm (all as implemented
in H2O)

Table 7 shows the tuning parameters used for the random forest models, Table 8 shows
the tuning parameters used for the gradient boosted forest models, and Table 9 shows the
tuning parameters used for the deep learning models. Note that in Table 9, the architecture
of the neural network is defined by the “hidden” parameter. The number of elements in
“hidden” are the number of layers, with the value of each element being the number of
nodes in each layer. These are fully connected layers and for the frequency model the loss
function that was used to train the model was logloss (Cross Entropy).

Table 7. Tuning Parameters for Random Forest Frequency Models.

Model Parameter Possible Values

ntrees 100
max_depth 20, 15, 10, 7, 5

min_split_improvement 0.001, 0.01
mtries 20, 7

histogram_type “RoundRobin”
sample_rate 0.632

categorical_encoding “EnumLimited”
col_sample_rate_per_tree 0.8

seed 16

Table 8. Tuning Parameters for Gradient Boosted Forest Frequency Models.

Model Parameter Possible Values

ntrees 300, 500, 1000
max_depth 1, 2, 3, 5, 7, 10
learn_rate 0.001, 0.0001

min_split_improvement 0.0001
distribution “multinomial”
sample_rate 0.632
nbins_cats 56

categorical_encoding “Eigen”
col_sample_rate_per_tree 0.8

seed 16
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Table 9. Tuning Parameters for Deep Learning Frequency Models.

Model Parameter Possible Values

activation “Tanh”
hidden 100, [100, 100], [200, 200], [100, 100, 100]

adaptive_rate FALSE
rate 0.1, 0.01, 0.005, 0.001, 0.0005

rate_decay 0.5
momentum_start 0.5

momentum_stable 0.99
input_dropout_ratio 0.1

initial_weight_distribution “Normal”
initial_weight_scale 1

loss “Automatic”
distribution “multinomial”

stopping_metric “logloss”
stopping_tolerance 0.001

categorical_encoding “EnumLimited”
seed 16

mini_batch_size 100

3.2.2. Severity Model Tuning

Severity model tuning proceeded in a similar way to the frequency model tuning. First,
a baseline model was created using a simple linear model to predict the severity. Then,
random forest, gradient boosted, and deep learning models were tuned in H2O to predict
the severity. All these models were regression models, trying to predict the numerical value
of severity. Because the severity is very right skewed, we also tuned the models to predict
the log of the severity with each model type and for each tuning parameter combination.
This helped improve the predictive power of the models in many cases.

The severity models tuned much more quickly than the frequency models because
before tuning the models we dropped all duplicate rows from the training dataset and
filtered where ULTIMATE_AMOUNT was greater than zero. This was possible because
severity was not unbalanced, so we did not need to up-sample or down-sample any part of
the data. Dropping duplicate rows allowed us to essentially undo the up-sampling that
was performed to all rows with a claim.

Table 10 lists the tuning parameters used for the severity random forest models,
Table 11 lists the tuning parameters used for the severity gradient boosted forest models,
and Table 12 lists the tuning parameters used for the severity deep learning models. Again,
in Table 12, the architecture of the neural network is defined by the “hidden” parameter.
The number of elements in “hidden” are the number of layers, with the value of each
element being the number of nodes in each layer. These are fully connected layers and
the loss function used to train the model depended on the value of the “distribution”
parameter. When the distribution was gaussian, mean squared error was used as the
loss function, while when the distirbution was Laplace, absolute loss was used. For
further information about the loss functions and their implementations, see the H2O
documentation (H2O.ai 2021).
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Table 10. Tuning Parameters for Random Forest Severity Models.

Model Parameter Possible Values

ntrees 100, 200
max_depth 3, 5, 7, 10, 15, 20, 30

min_split_improvement 0.01, 0.001, 0.0001
mtries −1, 20, 7

histogram_type “UniformAdaptive”, “RoundRobin”
sample_rate 0.632

categorical_encoding “EnumLimited”
col_sample_rate_per_tree 0.8

seed 16

Table 11. Tuning Parameters for Gradient Boosted Forest Severity Models.

Model Parameter Possible Values

ntrees 300, 500, 1000
max_depth 1, 2, 3, 5, 7, 10
learn_rate 0.001, 0.0001

min_split_improvement 0.0001
distribution “gaussian”, “gamma”, “laplace” *, “huber” *
sample_rate 0.632
nbins_cats 56

categorical_encoding “Eigen”
col_sample_rate_per_tree 0.8

seed 16
* Laplace and Huber distributions only used when not predicting the log of the severity

Table 12. Tuning Parameters for Deep Learning Severity Models.

Model Parameter Possible Values

activation “Tanh”
hidden 100, [100, 100], [200, 200], [100, 100, 100]

adaptive_rate FALSE
rate 0.01, 0.001, 0.0001, 0.00001

rate_decay 0.5
momentum_start 0.5

momentum_stable 0.99
input_dropout_ratio 0.1

initial_weight_distribution “Normal”
initial_weight_scale 1

loss “Automatic”
distribution “gaussian”, “laplace”

stopping_metric “MAE”
stopping_tolerance 0.001

categorical_encoding “EnumLimited”
seed 16

mini_batch_size 50

4. Tuning Results

After the tuning process was complete across all three datasets for all model types and
parameter combinations, we set to work visualizing and summarizing the tuning results. In
this section, we will explain the tuning results for each dataset and each part of the model,
noting that the metrics shown in these parts are calculated on the validation dataset. Addi-
tionally, in each figure in this section, points on the plots represent trained models and lines
represent smoothers showing the trend across different levels of hyperparameters. After
considering each part individually, we will then look at the results when the predictions are
combined and the metrics of the overall two-part model are computed on the test dataset.
Before we proceed, however, we present the results of a baseline GLM for both model parts
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(linear regression for severity and multinomial regression for frequency) across all three
datasets in Table 13.

Table 13. GLM validation data metrics for all three datasets.

Dataset Severity GLM MAE Frequency GLM Logloss

BI 18,574 0.9239
PD 2739 1.1518

COLL 2459 1.1262

When we compare these to the results presented below, we see that the best machine
learning methods yield substantial improvement in the chosen metrics in relation to the
GLMs.

4.1. BI Data

The models on the BI data performed the poorest out of the three datasets, which is
understandable. Bodily injury claims are the least common, and when they do occur, they
have the largest range of severity. This leads to a lot of noise in the models and overall
poorer predictive performance.

4.1.1. Frequency Models

The most accurate frequency model was a deep neural network, but the neural net-
works also had the largest range of accuracy. Random forests performed best on average
across all tuning parameters as can be seen in Figures 2–4.

Figure 2. Visualization of the results from tuning random forests to predict claim frequency on the BI
data. Here, we show the change in logloss across different values of max depth of each tree in the
random forest. The left pane shows the results when mtry is 7, and the right pane shows the results
when mtry is 20. Each pane contains two lines of different colors representing different minimum
split improvements.
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Figure 3. Visualization of the results from tuning gradient boosted forests to predict claim frequency
on the BI data. Here, we show the change in logloss across different values of max depth of each
tree in the gradient boosted forest. The left pane shows the results when the number of trees is 300,
the middle pane shows when the number of trees is 500, and the right pane shows the results when
the number of trees is 1000. Each pane contains two lines of different colors representing different
learning rates.

Figure 4. Visualization of the results from tuning deep learning models to predict claim frequency
on the BI data. Here, we show the change in logloss across different values of learning rate for the
deep neural network. The left pane shows the results when there is one layer, the middle pane shows
results when there are two layers, and the right pane shows there are three layers. The coloring of the
lines correspond to the total number of nodes in the neural network.

4.1.2. Severity Models

In contrast, neural networks performed quite poorly on severity for the BI data.
Instead, we found that gradient boosted models worked best, especially those with a
smaller learn rate. Nonetheless, the best MAE was well over 15,000, which is less than
desirable. These results can be seen in Figures 5–7.
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Figure 5. Visualization of the results from tuning random forests to predict severity on the BI data.
MAE (as computed on the validation set) is shown on the y-axis as it varies according to the max
depth of each tree in the forest. Each pane shows a different minimum split improvement value, with
the different colors representing different values of the mtry tuning parameter.

Figure 6. Visualization of the results from tuning gradient boosted forests to predict severity on the BI
data (note that only models with the distribution tuning parameter set to “Laplace” are shown since
their MAE was much less than the other models). Validation MAE is shown on the y-axis as it changes
according to the maximum depth of each tree in the gradient boosted forest. Each pane shows a
different number of trees in the forest while each colored line represents a different learning rate.

Figure 7. Visualization of the results from tuning deep learning models to predict severity on the BI
data. Validation MAE is shown as a function of the total nodes in the neural network, with each pane
showing a different distributional assumption of the network and each line representing a different
learning rate.
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4.2. PD Data

The PD and COLL datasets were more conducive to modeling and running those
datasets through the tuning process resulted in more accurate models, in terms of logloss
and MAE. The PD dataset has the most claims out of the three datasets, and the least
number of records. These properties allow greater relationships to be drawn between
covariates and response and result in more accurate models.

4.2.1. Frequency Models

However, most of the increase in accuracy comes from the severity part of the model.
The frequency model tuning results are similar to those seen in the BI data, with the random
forest models being most consistent and hovering between 0.4 and 1. The gradient boosted
models performed quite poorly in predicting frequency on the PD dataset, and there were
some difficulties in tuning the neural networks that prohibited the entire tuning grid from
being run. These results can be seen in Figures 8–10.

Figure 8. Visualization of the results from tuning random forests to predict claim frequency on the
PD data. Here, we show the change in logloss across different values of max depth of each tree in the
random forest. The left pane shows the results when mtry is 7, and the right pane shows the results
when mtry is 20. Each pane contains two lines of different colors representing different minimum
split improvements.

Figure 9. Visualization of the results from tuning gradient boosted forests to predict claim frequency
on the PD data. Here, we show the change in logloss across different values of max depth of each
tree in the gradient boosted forest. The left pane shows the results when the number of trees is 300,
the middle pane shows when the number of trees is 500, and the right pane shows the results when
the number of trees is 1000. Each pane contains two lines of different colors representing different
learning rates.
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Figure 10. Visualization of the results from tuning deep learning models to predict claim frequency
on the PD data. Here, we show the change in logloss across different values of learning rate for the
deep neural network. The left pane shows the results when there is one layer, the middle pane shows
results when there are two layers, and the right pane shows there are three layers. The coloring of the
points correspond to the total number of nodes in the neural network.

4.2.2. Severity Models

The severity models for the PD dataset did much better than on the BI dataset, with
MAEs in the 2500 range. The most accurate model was a gradient boosted forest, although
neural networks based on the Laplace distribution also performed very well. The model
tuning in these plots shows how the tuning grid did a sufficient job of exploring the
parameter space to find at least a local minimum in many cases. Results from PD model
tuning can be seen in Figures 11–13.

Figure 11. Visualization of the results from tuning random forests to predict severity on the PD data.
MAE (as computed on the validation set) is shown on the y-axis as it varies according to the max
depth of each tree in the forest. Each pane shows a different minimum split improvement value, with
the different colors representing different values of the mtry tuning parameter.
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Figure 12. Visualization of the results from tuning gradient boosted forests to predict severity on the
PD data (note that only models with the distribution tuning parameter set to “Laplace” are shown
since their MAE was much less than the other models). Validation MAE is shown on the y-axis
as it changes according to the maximum depth of each tree in the gradient boosted forest. Each
pane shows a different number of trees in the forest while each colored line represents a different
learning rate.

Figure 13. Visualization of the results from tuning deep learning models to predict severity on the
PD data. Validation MAE is shown as a function of the total nodes in the neural network, with
each pane showing a different distributional assumption of the network and each line representing a
different learning rate.

4.3. COLL Data

Again, the COLL data were more adept for modeling than the BI data. These models
are the most accurate, and the tuning results give us the best metrics.

4.3.1. Frequency Models

Both the random forest models and the neural network models performed very well
in predicting the frequency of claims across the dataset. The gradient boosted models again
performed poorly. Results are visualized in Figures 14–16.
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Figure 14. Visualization of the results from tuning random forests to predict claim frequency on
the COLL data. Here, we show the change in logloss across different values of max depth of each
tree in the random forest. The left pane shows the results when mtry is 7, and the right pane shows
the results when mtry is 20. Each pane contains two lines of different colors representing different
minimum split improvements.

Figure 15. Visualization of the results from tuning gradient boosted forests to predict claim frequency
on the COLL data. Here, we show the change in logloss across different values of max depth of each
tree in the gradient boosted forest. The left pane shows the results when the number of trees is 300,
the middle pane shows when the number of trees is 500, and the right pane shows the results when
the number of trees is 1000. Each pane contains two lines of different colors representing different
learning rates.

Figure 16. Visualization of the results from tuning deep learning models to predict claim frequency
on the COLL data. Here, we show the change in logloss across different values of learning rate for the
deep neural network. The left pane shows the results when there is one layer, the middle pane shows
results when there are two layers, and the right pane shows there are three layers. The coloring of the
points correspond to the total number of nodes in the neural network.
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4.3.2. Severity Models

The severity models on the COLL data had the lowest MAE out of all model tuning
across the three datasets. Again, neural networks and gradient boosted both performed
strongly, while random forest lagged behind. This is likely due to the inability to specify
a target distribution when training a random forest, whereas we were able to specify a
heavy-tailed distribution such as the Laplace distribution for the gradient boosted and
neural network models. These results are shown in Figures 17–19.

Figure 17. Visualization of the results from tuning random forests to predict severity on the COLL
data. MAE (as computed on the validation set) is shown on the y-axis as it varies according to the
max depth of each tree in the forest. Each pane shows a different minimum split improvement value,
with the different colors representing different values of the mtry tuning parameter.

Figure 18. Visualization of the results from tuning gradient boosted forests to predict severity on
the COLL data (note that only models with the distribution tuning parameter set to “Laplace” are
shown since their MAE was much less than the other models). Validation MAE is shown on the
y-axis as it changes according to the maximum depth of each tree in the gradient boosted forest. Each
pane shows a different number of trees in the forest while each colored line represents a different
learning rate.
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Figure 19. Visualization of the results from tuning deep learning models to predict severity on the
COLL data. Validation MAE is shown as a function of the total nodes in the neural network, with
each pane showing a different distributional assumption of the network and each line representing a
different learning rate.

4.4. Two-Part Model

In additional to looking at the model tuning results for each individual part (frequency
and severity) of the two-part model, we also compared the predictions of the two-part
model against the test dataset. For each frequency and severity model, we predicted the
test dataset, and saved those predictions. Once all model tuning was finished, we were
able to compare two-part model predictions to the actual value of the test set. To achieve
this, we computed the expected value as predicted by the two-part model for each policy
in the test set for every combination of frequency and severity model.

In general, the better the frequency predictions and the better the severity predictions,
the better the overall two-part model. However, the best individual models did not
constitute the best two-part model. This is likely due to the fact that the individual model
parts were measured using the validation dataset, while the overall two-part models were
measured with the test dataset.

The results of the two-part models can be compared with the performance of the
individual model parts and then visualized. One of the most interesting visualizations was
to view the performance of the frequency model against the performance of the two-part
model. In Figures 20–22, we see the resulting plots for the BI, PD, and COLL datasets.

As was seen in the training of the frequency models, the neural networks and random
forests performed best for predicting frequency while the gradient boosted forests lagged
behind. Further, the convexity of the trend between the different model types. While the
MAE of the two-part model began to slow its rate of increase as the logloss of the frequency
model increase for neural networks, it seems to generally speed up in the case of random
forests in the same situation.

We can also compare the performance of the severity model parts to the performance
of the two-part model. For concision, we have placed these plots in Appendix E.
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Figure 20. Comparison of the logloss of the frequency model part to the MAE of the overall two-part
model for the BI data. MAE of the entire two-part model is shown on the y-axis while logloss of the
frequency model is shown on the x-axis in order to illustrate how the logloss can affect the overall
performance of the two-part model. Different types of frequency models are shown in each pane,
while severity model types are shown by different colored points.

Figure 21. Comparison of the logloss of the frequency model part to the MAE of the overall two-part
model for the PD data. MAE of the entire two-part model is shown on the y-axis while logloss of the
frequency model is shown on the x-axis in order to illustrate how the logloss can affect the overall
performance of the two-part model. Different types of frequency models are shown in each pane,
while severity model types are shown by different colored points.
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Figure 22. Comparison of the logloss of the frequency model part to the MAE of the overall two-part
model for the COLL data. MAE of the entire two-part model is shown on the y-axis, while logloss of
the frequency model is shown on the x-axis in order to illustrate how the logloss can affect the overall
performance of the two-part model. Different types of frequency models are shown in each pane,
while severity model types are shown by different colored points.

5. Final Models

In the end, we determined the best final model for each dataset based on the MAE
computed on the test set of the two-part model.

5.1. BI Final Model

For the BI data, the best two-part model was made up of a neural network frequency
model and a neural network severity model. The frequency model had 100 nodes arrayed
in a single layer, and a learning rate of 0.01. The severity model had 300 nodes in three
layers, with each layer having 100 nodes each, trained on the log of the severity, and also
had a learning rate of 0.01. The overall two-part model had an MAE of 476.41 on the test
dataset when predicting the expected value of the cost.

Prediction Concerns for the BI Model

Even though we took care to balance the data, we wanted to ensure that the models
with the best MAE were not naively predicting zero. To do this, we compared the mean
model prediction against the mean model prediction of all other models. When doing this,
our suspicions were confirmed.

The frequency part of the model assigned an average probability of 94% to zero claims,
when among the other models we would expect zero claims to be assigned around a 43%
probability. It also was the model that assigned the smallest probability to the one claim
class, on average. Furthermore, the average severity prediction for the severity model part
was approximately 50% lower than the average model, and only one other severity model
had a lower average prediction.

In short, what we found was that in spite of our efforts, the double neural network
combination had been over-fit to predict small values. To avoid this for the other two
datasets, we will limit our search for the best model to be only gradient boosted or random
forest models, which tend to be less over-fit and have more useful predictions. Further,
these kinds of models can be explained using the mSHAP algorithm, which will allow us
to determine why the models made the predictions that they did (Matthews and Hartman
2021).
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5.2. PD Final Model

When we filtered out the neural network models, the best two-part model for the PD
data was made up of random forests for both the severity and frequency models.

For a complete analysis of this final model, including parameters and prediction
explanations, see Matthews and Hartman (2021).

5.3. COLL Data Final Model

For the COLL data, the best model (sans neural network type models) consisted of
a random forest for frequency and a gradient boosted forest for severity. The random
forest for predicting the frequency was made up of 100 trees with a max depth of 20 and
each split considering 20 different variables. It had a validation logloss of 0.424, which is
fairly good for a four-class classification problem. The gradient boosted forest ran over
1000 trees with a max depth of one and a learn rate of 0.001. This model was trained with
the untransformed severity and used a Laplace distribution at its core.

Additionally, the model’s predictions are less biased towards zero than we saw with
the neural networks in the BI data. The frequency model predicts zero approximately
two-thirds of the time and one 27% of the time. Furthermore, the severity model has an
average prediction that is approximately 50% more than the minimum model prediction,
meaning it predicts a significantly higher severity than the lowest models. In all, we are
satisfied that the model predicts a fair premium and is not excessively biased towards zero.

In the subsequent section, we will dig deeper into the final model for the COLL data.
Due to this, additional plots describing the distribution of the predictions of the final model
can be found in Appendix E.

5.4. Model Explanation Case Study

In the final section of this paper, we will explore a two-part model that was computed
on the collision dataset. The selected two-part model is the best COLL model, where both
parts of the model are tree-based algorithms (gradient boosted forests or random forests).
This will allow us to present explanations of the final model predictions using the mSHAP
algorithm, a necessity in the regulated insurance industry (Matthews and Hartman 2021).

Applying the mSHAP algorithm to a subset of the test dataset allows us to explain the
amount each variable contributed to the final prediction. The mSHAP algorithm builds off
of SHAP values, and its accuracy comes from advances that permit exact computations of
SHAP values (Lundberg et al. 2020; Lundberg and Lee 2017).

SHAP values are local feature explainers, meaning that they compute the effect of a
feature on a single prediction from the model. These values are related to the difference
between the actual prediction and the prediction of the model with all feature subsets that
do not have the feature in question. In order to compute the SHAP values (which are
necessary for applying mSHAP) of our final model, we trained the model in python using
the scikit-learn module (Pedregosa et al. 2011). Using this, we could then obtain and save
the SHAP values, which were saved to a file and then imported into R in order to use the
mSHAP R package to get the final contributions (Matthews and Hartman 2021). Since the
main purpose of computing the mSHAP values was for visualization, we only computed
SHAP values on 50,000 observations in our COLL test dataset.

Figure 23 shows a summary plot of mSHAP values for the 10 most important variables
in our final two-part model. We see that X_VAR41, which is known to be year, is the most
important variable, and that the state variable (X_VAR27) is also one of the most important
variables. This plot also shows trends in the relationship between the variable value and
the SHAP value. Generally, the extremes are correlated with extreme variable values, which
is interesting.

In addition to a summary plot, the mSHAP values of the final two-part model allow us
to create a plot showing how the model arrived at individual predictions. Three example
plots are shown in Figure 24, showing three different kinds of predictions.
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Figure 23. A summary of mSHAP values from 50,000 observations in the COLL test dataset. The
10 most important variables are shown with a beeswarm plot corresponding to the estimated SHAP
values from the dataset. Color corresponds to the actual value of the variable, not its importance.

Figure 24. An explanation of three different individual predictions on the COLL test dataset using the
mSHAP values. The yellow line shows the model prediction and the grey line is the average model
prediction across the training set. Colored bars represent the impact from the 10 most important
variables.

These plots allow us to explain exactly how the model arrived at its prediction for the
expected cost of the given policy. They are created in R using the mSHAP R package, which
is available on the CRAN. With plots like these, actuaries can explain to regulators and
consumers why the insurance rates are set the way they are, and what factors contribute the
most to the insurance cost. Although we have explored many machine learning methods
for predicting the loss cost of a policy, this exploration is less valuable if the methods cannot
be applied in the field. The mSHAP algorithm provides the potential for two-part models
to be implemented in a regulated industry such as insurance.



Risks 2022, 10, 80 22 of 25

6. Conclusions

In conclusion, there is great potential for exploration in the area of machine learning
applied to two-part ratemaking models. The dataset obtained from the Casualty Actuary
Society is a great opportunity for exploring these methods, and we have seen significant
improvements over classic generalized models in our results. Additionally, using machine
learning in ratemaking is potentially feasible due to the mSHAP algorithm, which explains
the predictions of two-part models and allows for transparency in insurance pricing.
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Appendix A. Data

The data used in this paper were obtained from the Casualty Actuary Society (CAS).
Readers interested in obtaining the data for their own research projects should email Brian
Fannin of the CAS a short proposal of the project they hope to conduct.

Appendix B. CAS Repo

All the code used in the cleaning of the data, preparation of the data, modeling of the
data, and analyzing of the data can be found in the github repo at https://github.com/
srmatth/CAS (as of 7 April 2022). Additionally, this repo includes many of the resulting
datasets from our analysis in the output/ directory. Scripts ran on a server (with a large
amount of RAM) are found in CODE_Server/, and code used to analyze the results and
create plots can be found in CODE_Analysis/. There is also a CODE_Reference/ directory
which contains a couple of files pointing out useful tips for working within the framework
that we did.

For further information, see the .README file in the github repo.

Appendix C. Computing Considerations

The train data for each of the three datasets had 12 million rows and 42 predictors. In
order to train these models, we used the BYU statistics department servers. These machines
had enough RAM to deal with the data in their raw format, and effectively model it. In our
experience, in order to model these data in the way that we did, H2O needs to have at least
50 GB of memory allocated to the cluster.

After the initial hurdle of figuring out where and how we could model the data,
we began the process of running the model tuning RScripts on the servers. The severity
models ran fine (they use less data, see Section 3.2.2) and without too much difficulty, but
tuning the frequency models was more challenging. Aside from running slower, the Rscript
would often quit in the middle of the process for seemingly no reason. Many long hours
were spent babysitting these models and ensuring that they ran properly. Ultimately, we

https://github.com/srmatth/CAS
https://github.com/srmatth/CAS
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discovered that part of the problem was the H2O package being updated in R without
the core H2O cluster being updated on the servers. Once we realized this and fixed it,
the frequency models ran much smoother, although there were still some script failures.
Overall, H2O is very useful for modeling large data, but can be a little bit unstable when
running for long periods of time.

Aside from the lessons learned about H2O, we discovered many ways to save memory
and time when modeling. In each loop we wanted to save the predictions of the model on
the test set so that ultimately we could compute tuning metrics for the overall two-part
model. However, writing these data every loop was expensive, and we instead landed on a
solution that allows the user to input the save frequency, or how often the tuning results
and the predictions on the test dataset are saved.

Another lesson learned was from the model combination where we computed the
metrics on the test set for the two-part model. Due to the large number of combinations
of models, we needed to ensure we were using as many cores as possible on the servers.
To do this, we used the futures package from the tidyverse in R that allows for multiple
computations to be run simultaneously (Vaughan and Dancho 2021). In this framework,
however, the data are copied to each core individually, meaning that we had to be careful
about how many cores we set the process to work on, as a single instance can use up to
30GB of RAM. This process could be made more efficient by storing the predictions for each
model in a separate file, instead of one large file like we did. That would allow the user to
simply pass the two names of the files to the parallel mapping, which requires almost no
duplicated memory allotment.

Appendix D. Model Training Code

Again, all code can be found in the github repo at https://github.com/srmatth/CAS
(as of 7 April 2022). The code used to search the model space is quite long and complicated,
as the model search was performed manually instead of using a pre-packaged system to
search hyper-parameters. This was performed so that detailed information about each
trained model could be gathered in every step, especially the predictions on the test set of
the data. Psuedo-code for the grid search is shown in Algorithm A1. We also note that the
specific functions that were used were H2O::H2O.randomForest() for the random forest
models, H2O::H2O.gbm() for the gradient boosted models, and H2O::H2O.deeplearning()
for the neural networks.

Algorithm A1 Psuedo-code for the model search performed as documented in this work.

Select dataset, data location, and output location
Create a tuning grid

grid← list(. . .) % > % expand.grid()
Load libraries and start the H2O cluster
Read in the data
for i in 1 : nrow(grid) do

Tune the model
Compute the model metrics
Predict on the test data
Save the metrics and predictions

end for
Shut down the H2O cluster

Appendix E. Additional Plots

Due to the exploratory nature of this paper, many plots were created that are not
necessary to include in the body of this paper. This section contains those plots, along with
descriptions of each one.

https://github.com/srmatth/CAS
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COLL Final Model Predictions

Figure A1. The frequency model’s predicted probability of the final COLL model. The left pane
shows the density of the predicted probability for 0 claims, while the right pane shows the density of
the predicted probability of 1 claim. These plots help demonstrate what the predictive distribution of
the model looks like.

Figure A2. A density plot showing the distribution of severity predictions across the test set for the
COLL model and data.

Figure A3. A density plot showing the expected value predictions when both the frequency and
severity model parts are combined for the COLL data, as predicted on the test set. This corresponds
to the premium when adjusted for the exposure of the policy.
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