
1 Title Slide

Hello to everyone, my name is Spencer Matthews. In December of 2020
I graduated from Brigham Young University with a Bachelor’s degree in
Statistics, and I begin a PhD in Statistics at UC Irvine in September of this
year. Today I will be presenting original research undertaken by myself and
Brian Hartman while I was an undergraduate student at Brigham Young
University. This research resulted in the mSHAP (or multiplicative SHAP)
algorithm, which allows for computation of SHAP values on two-part models.

2 Motivation Slide

Since insurance is required for things such as owning a car or obtaining a
mortgage it is important that pricing is neither discriminatory nor unfair.
Two-part models are frequently used by actuaries to set insurance rates, and
in order to achieve fairness these models must be explainable.

Newer “black-box” methods provide greater accuracy to pricing models,
but make it difficult for actuaries to explain why the model made certain
predictions. Recent research in the area of explainable machine learning
has given powerful tools, such as SHAP values, to explain these “black-box”
models. However, there is not a good methodology to explain the predictions
of two-part models. We believe that using the SHAP values of the individual
models, we can quickly approximate the SHAP values of the overall two-part
model.

3 SHAP Value Introduction Slide

But first, a brief introduction to SHAP values. Lloyd Shapley pioneered what
he called the Shapley value in the 1950s while doing research in cooperative
game theory. His idea was to compute the contribution of each player to the
overall outcome of the game.

In 2017, Scott Lundberg and Su-in Lee adapted Shapley values to the
needs of machine learning with the idea of a SHAP value as computed by
kernelSHAP. This powerful algorithm can estimate SHAP values from the
predictions and the predictors for any set of data. It allows a black box
model to become a glass box model where anyone can see how the model
arrived at its prediction.

1



Currently, kernelSHAP is the most prominent possibility for explaining
two-part models, but its computational cost grows exponentially as variables
and observations are added. The high dimensional data available across
millions of insurance policies makes using kernelSHAP a non-option for many
actuaries.

TreeSHAP was proposed by Lundberg et al. in 2020 as a way to quickly
compute exact SHAP values for tree-based algorithms. This set the stage
for explaining two-part models consisting of tree-based algorithms, which is
what the mSHAP algorithm does.

4 Definitions Slide

Before discussing the math behind mSHAP, we will define various terms as
follows:

• First, we will define three models, f, g, and h and we will define h to
be the product of f and g.

• Furthermore, we have an input matrix A which consists of n observa-
tions and p predictors. Ai represents the ith observation in A.

• For simplicity of notation, we define x̂i, ŷi and ẑi as f, g, and h of Ai,
respectively. To denote the contribution of the jth covariate to the
prediction, we will write sxij.

• SHAP values depend on a baseline term, which is the average model
prediction over the data. We will define this baseline term as µf , µg

and µh for models f, g, and h.

This brings us to the property of local accuracy, which says that the ith
prediction from model f will equal the sum of the SHAP values and the
baseline term. In more general terms it can be written as this.

5 Local Accuracy Slide

Which in words means that the sum of the SHAP values and the expected
model output must equal the model prediction. Local accuracy is an essential
property of SHAP values as defined by Lundberg and Lee, but causes issues
when we try to apply SHAP values to two-part models.

2



5.1 SLIDE

Consider a brief example.

5.2 SLIDE

In a very simple case we have two models with two covariates in our data
set. The box here shows the breakdowns of the resulting predictions for the
ith row of the data into their parts, based on the property of local accuracy.
The prediction equals the sum of the mean model output and the variable
contributions, denoted by s.

5.3 SLIDE

To compute ẑi, we multiply x̂i and ŷi. However, in spite of what most of us
wanted to believe at some point in our early education, the product of x̂i and
ŷi is not as simple as it appears here.

In fact, jumping to a more general case with p predictors,

6 Expansion of Terms Slide

we see that the resulting expansion can be quite complex. Along the top
margin we have the prediction x̂i from model f , and along the left margin,
we have the prediction ŷi from model g. These two predictions have been
expanded out into the contributions from each variable and the baseline
term, per the local accuracy property. Each s in the margin is a SHAP value
that contributes to a model prediction. Those in the top make up a single
prediction from model f and those on the left do the same for model g. For
our generalized two-part model, the prediction is the product of x̂i and ŷi,
the predictions from model f and g respectively. By definition, this is the
sum of the table excluding the margins. When trying to compute the final
SHAP values of the two-part model we see that the SHAP value of a single
variable has been blended with those of all other variables.

6.1 SLIDE

Consider variable 1, whose contributions to the two model predictions are
denoted in the margins by sxi1 and syi1. It is apparent that there is an

3



inherent difficulty in attributing a single contribution to the final prediction
for this (or any) variable.

This brings us to our proposed approach, which involves first computing
a modified contribution for each variable. Taking variable 1 as our example,
this modified contribution is computed as the sum of the first row and the
first column, where every term is divided by 2 except the terms containing a
µ.

6.2 LOTS OF SLIDES

This can be repeated for all predictors, covering every term in the table
except µfµg.

Recall that for local accuracy to hold, we need contributions from each
variable and the baseline model output, µh. However, µfµg is not equal
to µh, so we break µfµg into two separate parts: µh and α, where α is an
adjustment term equal to µfµg − µh.

7 Proposed Approach Slide

Once we have our modified contributions, we add those to the mean of model
h and α. Again, we know that the sum of α and µh must be equal to µfµg, so
α is equivalent to µfµg −µh. In total, we have the prediction of the two-part
model equal to the sum of the modified contributions plus α plus the baseline
term of the two-part model, where the modified contributions are calculated
as previously mentioned.

Once this approach was derived, it became our task to distribute α back
into the modified contributions, so that we could end up with the model
prediction being equal to the sum of the contributions and the baseline term,
as local acuracy requires.

8 Distributing α Slide

For this purpose, we considered four different ways of distributing α. The
first was uniformly distributed, consisting of dividing alpha by the number of
predictors. Our three other methods were based on the value of the modified
contribution: raw value, absolute value, and squared value respectively.

4



In order to test how these different methods fared, we performed an in-
depth simulation study.

9 Simulation Study

This simulation study involved generating fake data and computing two
known responses, modelling the data, computing both kernelSHAP values
and mSHAP values with alpha distributed in the four different ways, and
then comparing the results. We scored the mSHAP values in relation to the
kernelSHAP values, even though kernelSHAP is an estimate. The score was
out of three, and was based on how many of the contributions had the same
sign, how many had the same importance rank based on absolute value, and
how close the actual values were.

In the end we obtained

10 Simulation Results Slide

these results. This table shows the average results for over 3,000 runs of the
simulation with different covariates, responses, and parameters passed to the
scoring functions. The ultimate winner was distributing α by the weighting
of the absolute value of the modified contribution, so that is the method we
used in our final equation for mSHAP values.

11 Final mSHAP Equation Slide

Here we have the final algorithm with the absolute value-based distribution
of α.

Ultimately, it allows us to write the prediction of our two-part model as
the sum of a baseline term and the mSHAP values for each predictor, thus
maintaining the local accuracy property.

This algorithm for computing mSHAP values for two-part models has
been implemented in R and can be accessed in the mSHAP package on
CRAN. Given the SHAP values and baseline terms for the parts of a two-part
model we can compute the SHAP values for the final prediction!

But is it valid? Our study shows that it is.

5



12 Comparison to kernelSHAP slide

In addition to the simulation to distribute α, we also simulated a compari-
son of TreeSHAP and mSHAP. Both these were scored against kernelSHAP,
which is represented on this plot as the dashed line at a perfect score of 3.
TreeSHAP values cannot be computed on two-part models, but we simulated
data for a single model with a target response that was equal to the two-part
model’s multiplied response. This simulation used the same scoring system
against kernelSHAP, and spanned a wide range of possible output transfor-
mations. On the chart, we see the results of this simulation across a variety
of number of predictors, with the mSHAP average score trend in red and the
TreeSHAP average score trend in blue.

Recall that kernelSHAP values are approximations while TreeSHAP val-
ues are exact, leading to the divergence between kernelSHAP and TreeSHAP.
However, the similarity in scores between mSHAP and TreeSHAP over a large
range of covariates leads us to believe that mSHAP is a valid computation
for SHAP values of two-part models.

In addition to being accurate, mSHAP is also much faster than ker-
nelSHAP since it builds upon TreeSHAP.

12.1 SLIDE

As previously mentioned, one of the biggest downfalls of kernelSHAP is the
computational cost associated with it. These charts show the time com-
parison between mSHAP and kernelSHAP computations as the number of
variables increase and as the sample size increases. Also note that these
kernelSHAP values were computed with only 100 background samples, and
adding more drastically slows the process.

mSHAP improves so much on the speed of kernelSHAP due to the Tree-
SHAP algorithm which allows for tree-based two-part models to be rapidly
explained. The mSHAP time displayed in these plots includes the time taken
to compute the TreeSHAP values for both model parts.

In a practical application, we had a data set of 5,000,000 observations
and 45 variables that we wanted to explain. Based on the time per observa-
tion at 45 variables, we computed that kernelSHAP would take 131 days of
computer-time to explain all the observations, whereas mSHAP only took 3
hours.

6



13 Application Slide

The practical application previously mentioned was done using a property
damage insurance data set, and the steps alternated between Python and R
in order to encourage interoperability between the languages. We cleaned the
data in R, trained both models and calculated TreeSHAP values in python,
and then passed those SHAP values back over to R to compute the mSHAP
values of the final two-part model.

13.1 SLIDE

Once we computed the mSHAP values on the two-part model, we could
visualize the distribution of SHAP values for the 10 most important vari-
ables. These points are colored by the variable value and give us a high-level
overview of the model. This plot allows us to speak in general terms about
what variables are important in the model and how they contribute to pre-
dictions on average.

13.2 SLIDE

We can also isolate a single prediction and visualize what the most important
variable contributions are to that prediction. This plot shows how the model
went from the baseline term to the ultimate prediction. We have a step-by-
step guide of how the variables contributed to the final model prediction.
It enables actuaries and regulators to ensure the models are fair, and gives
consumers an explanation of their insurance rates. This plot gives us an
explainable two-part model.

14 Conclusion Slide

In conclusion, kernelSHAP is unable to feasibly explain model predictions
for two-part models, but mSHAP provides a solution to this problem. Using
TreeSHAP values which can be computed rapidly, the mSHAP algorithm
explains the predictions of two-part tree-based models. This advance in
explainable machine learning will allow for tree-based models to become more
prevalent in regulated industries such as insurance.

7



15 Acknowledgment Slide

I would like to thank first and foremost my mentor and fellow researcher
Brian Hartman who worked on and supported this project the entire time.
Also the CAS for their grant and the Statistics Department at BYU for the
use of their servers.

For those interested, the paper is available on the arXiv, and the code
used to create the plots/perform the simulations is available on github.

The plots I showed in the application portion of the presentation were
created with the mshap R package, which is available on the CRAN and on
github.

Thank you for your attention!

8


